
NASA Contractor Report 194903

ICASE Report No. 94-25

/;,'_/-s_ 1

IC S
ON THE DESIGN OF CHANT:

A TALKING THREADS PACKAGE

Matthew Haines

David Cronk

Piyush Mehrotra

(NASA-CR-194903) ON THE DESIGN OF

CHANT: A TALKING THREADS PACKAGE

Fin_l Report (ICASE) 28 p

G3/61

N94-34952

Unclas

O012118

Contract NAS 1- 19480

April 1994

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA 23681-0001

Operated by Universities Space Research Association

_ ,I, $

On the Design of Chant"

A Talking Threads Package*

Matthew Haines David Cronk Piyush Mehrotra

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center, Mail Stop 132C

Hampton, VA 23681-0001

[haines, cronk, pm] @icas e. edu

Abstract

Lightweight threads are becoming increasingly useful in supporting parallelism and

asynchronous control structures in applications and language implementations. How-

ever, lightweight thread packages traditionally support only shared memory synchro-

nization and communication primitives, limiting their use in distributed memory envi-

ronments. We introduce the design of a runtime interface, called Chant, that supports

lightweight threads with the capability of communication using both point-to-point

and remote service request primitives, built from standard message passing libraries.

This is accomplished by extending the POSIX pthreads interface with global thread

identifiers, global thread operations, and message passing primitives. This paper in-

troduces the Chant interface and describes the runtime issues in providing an efficient,

portable implementation of such an interface. In particular, we present performance

results of the initial portion of our runtime system: point-to-point message passing

among threads. We examine the issue of thread scheduling, in the presence of polling

for messages, and measure the overhead incurred when using this interface as opposed

to using the underlying communication layer directly. We show that our design can

accommodate various polling methods, depending on the level of support present in

the underlying thread system, and imposes little overhead in point-to-point message

passing over the existing communication layer.

*Research supported by the National Aeronautics and Space Administration under NASA Contract No.
NASA-19480, while the authors were in residence at ICASE, NASA Langley Research Center, Hampton, VA

23681.

1 Introduction

Lightweight thread packages are seldom used in distributed memory multiprocessors due to

their inability to support direct cormnunication between individual threads in separate ad-

dress spaces. We introduce the term talking threads to represent the notion of two threads in

direct communication with each other, regardless of whether they exist in the same address

space or not. In this paper, we describe the design of a runtime system for talking threads

called Chant. Chant is capable of supporting both point-to-point primitives and remote

service requests (e.g., remote procedure call) using standard lightweight thread and com-

munication libraries. Standard point-to-point message passing primitives [9] are needed to

support most existing message passing programs, including those generated by parallelizing

compilers [15, 19, 34] and portable communication libraries [4, 30]. Remote service request

primitives are needed to support RPC communications [26, 31] client-server applications,

and irregular computations.

Threads are becoming increasingly useful in supporting parallelism and asynchronous

events in applications and language implementations, for both parallel and sequential ma-

chines. Threads are used in simulation systems [11, 28] (to represent asynchronous events

that can be mapped onto single or multiple processors); they are used in language imple-

mentations [21, 22, 27] (to provide support for coroutines, Ada tasks, and C++ method

invocations); and they are used in generic runtime systems [10, 13, 3a](to support fine-grain

parallelism, rnultithreading, and interoperability). In light of their increasing use, the POSIX

committee has adopted a standard for a lightweight threads interface [16], and many inde-

pendent lightweight thread libraries have been designed and implemented for workstations

and shared memory multiprocessors [1, 3, 11, 18, 23, 29].

Despite their popularity in shared memory systems, lightweight thread packages for dis-

tributed memory systems have received little attention. This is unfortunate: in a distributed

memory system, lightweight threads can overlap communication with computation (latency

tolerance) [8, 12]; they can emulate virtual processors [25]; and they can permit dynamic

scheduling and load balancing [6]. However, there is no widely accepted implementation of

a talking threads package.

Our goal is to design and implement a runtime system capable of supporting talking

threads based on accepted lightweight thread and communication libraries. Our design goals

center on high portability, based on existing standards for lightweight threads and commu-

nication systems, and high efficiency, based on supporting point-to-point message passing

without interrupts or extra message buffer copies. This system will then be used to support

our extensions to the High Performance Fortran standard [14] for task parallelism and shared

data abstractions [5], as well as providing support for other languages and systems.

The remainder of the paper is organized as follows: Section 2 provides background on

lightweight threads, communication primitives, and related research. Section 3 discusses our

design of a new talking threads package called Chant. We have implemented the bottom

layer of Chant; Section 4 reports on two experiments that validate our design decisions for

this layer.

2 Background

Chant: Talking Threads

Communication Library

(e.g. MPI, p4, PVM, ...)

Lightweight Thread Library

(e.g. pthreads, cthreads, ...)

Figure 1: Chant runtime layers

Chant provides an interface for talking threads by extending the interfaces of a communi-

cation system and a lightweight thread system, as depicted in Figure 1. As far as Chant is

concerned, these systems can be abstracted as two "black boxes" of systems: one box for

conmmnication packages, and one box for lightweight thread packages. Although there are

distinguishing features among the systems within each box, Chant is only interested in the

general characteristics of each box, as depicted in Figures 2 and 3. Rather than binding

Chant to a particular lightweight thread or communication package, we allow for a design

which can acommodate any system which provides this common set of capabilities.

2.1 Lightweight Thread Libraries

A thread represents an independent, sequential unit of computation that executes within

the context of a kernel-supported entity, such as a Unix process. Threads are often classified

by their "weight", which corresponds to the amount of context that must be saved when a

thread is removed from the processor, and restored when a thread is reinstated on a processor

(i.e. a context switch). The context of a Unix process includes the hardware register, kernel

stack, user-level stack, interrupt vectors, page tables, and more [2]. The time required to

switch this large context is typically on the order of thousands of microseconds, and thus

a Unix processes represents a heavyweight thread. Contemporary operating system kernels,

such as Mach, decouple the thread of control from the address space, allowing for multiple

threads within a single address space and reducing the context of a thread. However, the

context of a thread and all thread operations are still controlled by the kernel, which must

often include more context than a particular application cares about. Context switching

times for kernel-level threads are typically in the hundreds of microseconds, resulting in

a medium or middleweight thread. By exposing all context and thread operations at the

user-level, a minimal context for a particular application can be defined, and operations to

ThreadManagement Information

Set attributes

Define/access thread-local data

Create

Destroy

Thread id

Process id

Attribute info

Scheduling info

Synchronization Scheduling and Preemptio n

Lock (e.g., mutex)

Wait (e.g., condition variable)

Set policy

Set policy attributes

Yield

Figure 2: Desired lightweight thread package capabilities

manipulate threads may avoid crossing the kernel interface. As a result, user-level threads

can be switched in the order of tens of microseconds, and are thus termed lightweight.

Most lightweight thread packages contain functionality for creating, deleting, scheduling,

and synchronizing threads in a shared memory (uniprocessor or multiprocessor) environment.

Other features, such as control over stacks,, signal handling within threads, thread-local data,

and priority scheduling are only available in certain systems. Table 1 lists several of these

lightweight thread packages, including a comparison of their thread creation and context

switching times for a Sun Sparcstation 10. In an attempt to provide a standard interface

and set of functionality, the POSIX committee has drafted a standard threads interface [16].

None of the thread packages listed, including the proposed standard, provide support for

direct communication between threads in separate address spaces. However, thread packages

that do support interprocessor communication mechanisms of some form (from within the

context of a lightweight thread) include:

Nexus [10], a runtime interface designed to support interoperability among program-

ming languages on distributed memory computer systems, providing a thread abstrac-

tion that is capable of interprocessor communication in the form of asynchronous re

mote procedure calls, or Active Messages [31]. However, standard send/receive prim-

itives are not directly supported, and the overhead in providing this functionality is

unknown. Also, the overhead to select, verify, and call the correct message handling

routine without hardware and operating system support is expensive on most machines

[26, 31]. Chant takes the opposite approach by providing a basis for efficient point-

to-point communication (using well-known libraries), on top of which a remote service

request mechanism is provided'

NewThreads [8], an object-oriented runtime library that supports a non-preemptive,

Thread Package Create (#s) Switch (#.s)

cthreads [23],

originally developed as the Mach user-level threads package; has

been ported to many machines.

The REX lightweight process library [20],

defines a minimal, non-preemptive, priority-based threads package

for a number of workstations and shared memory multiprocessors.

pthreads [22],

provides a library implementation of the POSIX pthreads standard

interface, draft 6.

The Sun Lightweight Process (LWP) library [29],

provides a comprehensive set of thread routines supporting prior-

ities, user-defined contexts, and stack management routines; only

available under the SunOS 4x operating system.

Quickthreads [18],

provides a low-level, portable set of stack primitives for writing

efficient thread packages.

423

230

1300

400

440

81

60

29

25

21

Table 1: Performance of several thread packages on a Sun SparcStation 10

user-level threads class. Threads may communicate using special blocking point-to-

point communication calls in which messages are sent to ports, and a port can be

mapped into any thread on any node. A global name server is necessary to manage tile

unique global port identifiers. NewThreads is closest in spirit to the goals of Chant,

but we extend its support in two directions:

1. support for general, point-to-point message passing as supported by most com-

munication library systems and the proposed message passing interface (MPI) [9]

rather than blocking messages that must use a global naming server, and

2. support for a minimal, yet powerful, lightweight thread interface that extends the

POSIX standard, and can be quickly and efficiently implemented on a variety

of machines using existing POSIX thread libraries or our own POSIX interface,

implemented using the Quickthreads package.

• Various application-specific runtime systems which provide (either directly or indi-

rectly) support for talking threads, including a runtime system for parallel simulations

4

Process Management Point-to-Point

Create a process group

Add a process

Delete a process

Blocking send/receive

Nonblocking send/receive

Message polling

Message Header Information

Processor

Process

Data

Size

User tag

Group id

Processor id

Process id

Message stats

Figure 3: Desired communication package capabilities

[25] and ruutime systems for functional languages [7, 12]. However, these systems do

not provide a general library or interface for talking threads. They are often only

available under certain architectures and communication systems, and often use ex-

plicit thread management routines, encoded for a particular architecture, rather than

a portable lightweight threads library.

2.2 Communication Libraries

Communication systems for distributed memory architectures have traditionally been pro-

vided by the vendors, such as the Intel NX primitives [17] and nCUBE Vertex primitives

[24]. In response to the increasing demands of portability, several communication libraries

have been established that provide a portable message passing interface over a wide variety

of systems. Among these libraries, p4 [4] and PVM [30] have received the most attention.

Then, in an effort to unify the message passing community and entice vendors to support

a single message passing interface, the Message Passing Interface Forum was established to

prepare a standard interface that could be supported directly by vendors (for efficiency) and

would provide a portable interface for application's programmers and compilers. The result

is the message passing interface standard (MPI) [9]. However, neither the MPI standard nor

the other communication libraries provide direct support for message passing among threads.

Although it is possible to uniquely name each thread within some of these systems, the issues

of message delivery and thread scheduling as a result of message polling are not supported.

As a result, there is not a general method for supporting lightweight threads from within

one of these systems. Chant extends the functionality of these message passing systems to

support the notion of naming, message delivery, and polling within a thread system.

3 Design

Chant" Talking Threads

Chant pthread interface
.... ¢" r-

' ' Thread primitive extensions
| |

I

| Remote service requests

Point-to-point message passing

Communication Library

(e.g. MPI, p4, PVM, ...)

Lightweight Thread Library

(e.g. pthreads, cthreads, ...)

Figure 4: Chant runtime layers: exposed view

Figure 4 provides another look at Chant in the context of a layered runtime system, but this

time we illustrate the intermediate layers of the Chant system itself. Chant is composed of

four sub-layers: a point-to-point communication system, a remote service request mechanism,

an extension of the lightweight threads interface to account for global threads, and a coherent

interface based on an extension of the pthreads standard interface. Remote service requests

are built upon the point-to-point layer, and thread extensions are, in turn, built upon the

remote service request layer (as Figure 4 depicts). We now present a discussion of the design

issues for supporting efficient point-to-point communication (Section 3.1), remote service

requests (Section 3.2), and global thread operations (Section 3.3). The proposed Chant

interface, based on the pthreads standard, is given in Appendix A. Each of these sections

begins with an iconic representation of Figure 4, in which the highlighted layer corresponds

to the given section.

3.1 Point-to-Point Communication l 1

We now present a discussion regarding the design issues in providing efficient message passing

communication between threads using existing communication systems. Efficiency dictates

that Chant cannot make intermediate copies of the messages nor allow processor interrupts

that would disrupt the code and data caches, and thus our design of a point-to-point layer

takes these issues into account. A measure of the overhead incurred from the point-to-point

layer is presented in Section 4.1.

Point-to-point communication is defined by the fact that both the sending thread and

receiving thread agree that a message is to be transferred from the sending thread to the

receiving thread. Although there are various forms of send and receive primitives, the un-

derstanding on both sides that a conmmnication is to occur is necessary. As a result of

this understanding, it is possibleto avoid costly interrupts and buffer copiesby registering
the receivewith the operating systembefore the messageactually arrives. This allows the
operating system to place the incoming messagein the proper memory location upon ar-
rival, rather than making a local copy of the messagein a system buffer. Chant ensures
that no messagecopiesare incurred that wouldn't otherwisebe made by the underlying
communicationsystem,which is paramount to efficiency.

The basicpoint-to-point operationsare send and receive, where a send operation creates

a message and places it into the network with a given destination, and the receive operation

takes a message from a specified source and remove it from the network. Both of these basic

operations can be blocking or nonblocking, with different degrees of blocking (such as locally-

blocking or globally-blocking). For a more thorough treatment of message passing concepts,

the user is encouraged to read the MPI standard [9], or related message passing documents.

To support message passing from one thread to another, Chant must provide solutions

to the problems of naming global threads within the context of an operating system entity

(which we'll refer to as a process), delivering messages within a process, and polling for

outstanding messages.

.

.

The naming issue. Similar to the way in which processes are named relative to a

particular processing element, threads will be globally named relative to a particular

process. Chant uses a 3-tuple to identify global threads, composed of a processing

element identifier (pe), a process identifier, and a local thread identifier. The type of

the local thread identifier is determined by the thread type of the underlying thread

package and, although this will vary for different thread pacakges, allows the global

threads to behave normally with respect to the underlying thread package for opera-

tions not concerned with global threads. This allows Chant to easilly inherit much of

the underlying thread interface.

The delivery issue. Most communication systems support delivery to a particular

process within a specified processing element, but do not provide direct support for

naming entities within a process. All message passing systems, however, support the

notion of a message header, which is used by the operating system as a signature for

delivering messages to the proper location (process). Messages also contain a body,

which contains the actual contents of the message. In order to ensure proper delivery

of messages to threads, and without having to make intermediate copes, the entire

global thread name (pe, process, thread) must appear in the message header. Some

communication systems, such as MPI, provide a mechanism by which thread names

can easilly be integrated into the message header. MPI accomplishes this using the

communicator field, which is similar to the process field in most other communication

systems except that it can be used to represent multiple entities within the same

process. However, most communication systems, such as p4, do not provide explicit

support for the addition of a thread identifier to the message header. For these systems,

we must overload one of the existing fields: typically the user-defined tag field. This

7

receive

{

}

(args)

ireceive (args);

while (probe (ares)

yield;

receive (args);

!= true)

Figure 5: Pseudo-code for a blocking receive operation, thread polls

receive (ares)

{

}

ireceive (ares);

if (probe (ares) != true)

add probe request to scheduler table;

yield;

endif;

// rescheduled at this point only when the

// scheduler-activated probe succeeds.

receive (ares);

.

Figure 6: Pseudo-code for a blocking receive operation, scheduler polls

approach has the disadvantage of reducing the number of tags allowed, typically to

half the number of bits, where the thread id would occupy half of the tag field and

the tag would occupy the other half. An alternative approach would be to place the

thread id in the body of the message, leaving the existing header intact. However,

this would force an intermediate thread to receive all incoming messages, decode the

body, and forward the remaining message to the proper thread. In addition to being

time consuming, this method would require the message body to be copied on both

the sending (to insert the thread id) and receiving (to extract the thread id) sides.

To maintain efficiency, message copies must be avoided, and thus placing the thread

identifier in the body of the message is not an acceptable option.

The polling issue. Although Chant supports, at the user interface, both blocking and

nonblocking message operations, only nonblocking communication primitives from the

underlying communication system are utilized. This is to prevent a blocking call from

suspending the entire process, thus preventing other ready threads from executing.

When a non-blocking operation is performed, the communication system returns a

"handle" that can be used to check the completion of the operation at a later point

8

in time. To implement a blocking receive, the calling thread issues a corresponding

nonblocking receive and waits until the-operation has completed. However, rather than

block the processing element, we wish to schedule other ready threads for execution and

only return to the calling thread when the receive operation has been completed. This

leads to the question of how to perform the required polling operations necessary to

determine when the nonblocking operation has completed. A thread scheduling policy

must therefore take message polling into account when scheduling ready threads for

execution. There are two basic alternatives to polling for message completion: having

the thread poll for itself whenever it is rescheduled for execution (refer to Figure 5),

or having the scheduler issue the polling request on behalf of the thread whenever it is

between scheduling operations (see Figure 6). The former method has the advantage

of not having to register receive operations with the scheduler, but will cause context

switching overheads in the case when a thread is re-scheduled but cannot complete the

receive operation. The latter method requires all threads to register a receive with the

scheduler, and then are removed from the ready queue and placed on a blocking queue

until the message arrives. This avoids the overhead of scheduling a thread that is not

really ready to run, but forces the scheduler to poll for outstanding messages on each

context switch.

In Section 4.2, we address this scheduling decision in detail and evaluate the various

polling options and their influence on the scheduling of ready threads. Our goal is

to determine which polling option yields the best schedules over a variety of simu-

lated workloads. Our results indicate that, although having the scheduler poll for the

threads results in the best performance, having the threads poll for themselves is only

slightly worse in the average case scenario. This is significant because some underlying

lightweight thread packages won't allow modification of the scheduler's activities, but

all packages can safely implement the policy in which the thread polls for itself.

3.2 Remote Service Requests

Having established a mechanism by which lightweight threads located in different addressing

spaces can communicate using point-to-point mechanisms, we now address the problem of

supporting remote service requests, which builds on our designs for point-to-point message

passing. Remote service request messages are distinguished from point-to-point messages in

that the destination thread is not expecting the message. Rather, the message details some

request that the destination thread is to perform on behalf of the source thread. The nature

of the request can be anything, but common examples include returning a value from a local

addressing space that is wanted by a thread in a different addressing space (remote fetch),

executing a local function (remote procedure call), and processing system requests necessary

to keep global state up-to-date (coherence management).

9

repeat forever

{

ireceive (remote-service-request-message-type);

if (probe (args) != true)

add probe request to scheduler table;

yield;

endif;

message = receive (args);

handler = unpack (message);

*handler (message);

Figure 7: Pseudo-code for the server thread, scheduler polls.

Most remote service requests require some acknowledgment to be sent back to the

requesting thread, such as value of a remote fetch or the return value from a remote procedure

call. To minimize the amount of time the source thread remains blocked, we wish to process

the remote service request as soon as possible on the destination processor, but without

having to interrupt a computation thread prematurely. Interruptions are costly to execute

and can disrupt the data and code caches which, as processor states increase, will continue

to have a detrimental effect on the efficiency of a program [26]. Also, the MPI standard

[9] does not support interrupt-driven message passing, thus utilizing interrupts in a design

would preclude the use of the MPI communications layer. Therefore, we need a polling

mechanism by which remote service requests can be checked without having to prematurely

interrupt a computation thread when such a request arrives.

Since the main problem with remote service requests is that they arrive at a process'or

"unannounced", we simply introduce a new thread, called the server thread, which is respon-

sible for receiving all remote service requests. Using one of the polling techniques outlined in

Section 3.1, the server thread repeatedly issues nonblocking receive requests for any remote

service request message, which can be distinguished from point-to-point messages by virtue

of being sent to the server thread rather than a computation thread. When a remote service

request is received, the server thread assumes a higher scheduling priority than the compu-

tation threads, ensuring that it is scheduled at the next context switch point. Pseudo-code

for the server thread is given in Figure 7, showing how remote service requests are built upon

point-to-point messages.

l0

3.3 Supporting Global Thread Operations

As well as adding communication primitives to a lightweight thread interface, Chant must

support the existing lightweight thread primitives that are inherited from the underlying

thread package. These primitives provide functionality for thread management, thread syn-

chronization, thread scheduling, thread-local data, and thread signal handling. We divide

these primitives into two groups: those affected by the addition of global thread identifiers

in the system, and those not affected. For example, the thread creation primitive must be

capable of creating remote threads, but the thread-local data primitives are only concerned

with a particular local thread. Our goal in designing Chant is to provide an integrated and

seamless solution for both groups of primitives. This is accomplished in two ways.

.

.

Global thread identifiers are 3-tuples consisting of a processing element id, a process

id, and a local thread id whose type matches the thread type inherited from the un-

derlying system. This makes it possible to extract the local thread specification for the

primitives that are not concerned with global threads, such as the thread-local data

operations. Chant provides a primitive (pthread_chanter_pthread) that returns the

local thread portion of a global thread identifier for this purpose.

Thread primitives that are affected by the global identifiers either take a thread iden-

tifier as an argument (such as join) or return a thread identifier (such as create). In

either case, the primitive must handle the situation of a thread identifier that refers

to a remote thread. For example, consider the thread creation operation, which cre-

ates a local thread within the specified processing element and process. Since thread

resources (such as a stack) must be allocated by the processing element on which the

thread is to be executed, creating a remote thread may require the help of another

processing element.

Having described the details of how Chant supports remote service requests (in Sec-

tion 3.2), we can now utilize this functionality in the form of a remote procedure call.

Similar to how Unix creates a process on a remote machine [32], Chant utilizes the

server thread and the remote service request mechanism to implement primitives which

may require the cooperation of a remote processing element. Returning to our example

of a thread creation operation, if it is determined that the new thread is to be exe-

cuted on a remote processing element, a remote service request is sent to the specified

processing element, informing it to create the desired thread (allocate resources) and

insert it into the local thread queue.

1i

4 Experimental Results

It is not our goal to argue that threads themselves are useful for programming distributed

memory multiprocessors (the argument can certainly be made: for example, consider la-

tency tolerance and dynamic load balancing capabilities, which are natural extensions of a

thread-based implementation). Instead, our goal is to demonstrate that our design decisions

were effective in implementing a talking threads interface, namely Chant. To prove the ef-

fectiveness of these decisions, we perform two different experiments on the point-to-point

layer of our system (refer to Figure 4), which is the layer we have currently implemented.

The other two layers, remote service requests and thread primitive extensions, have been de-

signed and are now being implemented atop our point-to-point layer, and we hope to report

on them soon. The first experiment is designed to measure the overhead of thread-based

point-to-point communication as opposed to point-to-point communication as supported

by the underlying communication system. The second experiment is designed to test the

various scheduling techniques that are available when polling for outstanding messages in

point-to-point communication. All of the experiments are carried out on an Intel Paragon

machine using the NX message passing library and a small lightweight thread library as the

underlying components.

4.1 Thread-Based Point-to-Point Communication Overheads

If we assume that threads can simplify programming for such optimizations as latency toler-

ance and dynamic load balancing, then we wish to know the cost at which this simplification

comes. That is, what is the tradeoff, in terms of execution time overhead, for using thread-

based point-to-point communication over using the point-to-point communication mecha-

nism directly provided by the underlying system. To answer this question, we measure the

cost of sending and receiving messages on the Paragon using two processes and the NX prim-

itives, and compared this to the cost of sending and receiving messages between two threads

on two Paragon processors (one per processor) using Chant. In a sense, this is a worst-case

scenario for a threads system, since we are using the exact same calls as the process version,

but having to add some amount of overhead per message to handle the thread naming and

delivery issue, as well as a possible context switch. In the general case, we expect that there

would be multiple threads per processor, and a context switch would result in overlapping

communication with useful computation.

Table 2 (also depicted in Figure 8) gives the results of this experiment in terms of average

time per message (#s) and overhead relative to the process-based method. To get accurate

results, each test consisted of 100,000 message exchanges, and each test was repeated four

times. The numbers given represent an average of these runs. We actually implemented two

different thread-based approaches to demonstrate how the overhead is affected by message

polling. In first method, Thread (TP), threads poll for their own outstanding message (as

depicted in Figure 5). Since there is only one thread per processor, the scheduler simply

12

Process Thread(TP) Thread (SP)
Messagesize Time (#s) Time (#s) Overhead(%) Time (#s) Overhead(%)
1024

2048

4096

8192

16384

667.1

917.0

1639.3

2873.5

5531.8

710.8

973.2

1701.2

2998.8

5624.8

6.4

6.1

3.8

4.3

1.7

773.7

1126.5

1828.8

3130.8

5689.0

15.9

22.8

11.5

8.9

2.9

Table 2: Average time per message (#s) and overhead for thread-based point-to-point com-

munication, based on process-based communication times for various-length messages (bytes)

returns without having to perform a context switch each time. In the second method,

Thread (SP), the scheduler polls for outstanding requests on behalf of the thread (as depictd

in Figure 6), forcing a context switch for each message received. We study polling methods
in more detail in Section 4.2. Our results indicate that the overhead of the thread-based

point-to-point layer is low, adding only 15% overhead to the base message passing layer in

the worst case.

4.2 Thread Scheduling for Message Polling

In Section 3.1 we introduced the problem of polling for outstanding messages in point-to-

point communication. We now take a closer look at that problem, measuring three scheduling

algorithms, and determine their effect on the performance of the system.

Recall that there are essentially two methods of polling for an outstanding message:

thread polls (see Figure 5), which we will refer to as the Thread polls algorithm, and scheduler

polls (see Figure 6). The scheduler polls method is based on a list of polling requests that are

examined at each scheduling point to see if any outstanding messages have arrived. Ideally,

this would be implemented as a single call to the communication system, inquiring whether

any of the outstanding receive requests have been satisfied. If so, the value returned from

the check would designate a waiting thread, which could then be enabled for execution. On

some communication systems this functionality is provided. For example, MPI provides the

MPI_TEST_ANY primitive, which will test for the completion of any outstanding requests from

a given process. However, on other systems, such as the Intel NX system Chant is currently

using, this functionality is not supported. Therefore, the algorithm needs to be modified

so that each outstanding request will be tested in turn. This implies that all outstanding

messages are checked at each context switch. When a polling request is finally satisfied,

the corresponding thread is then scheduled for execution. We refer to this version of the

scheduler polling algorithm as Scheduler polls (WQ), where WQ stands for "waiting queue".

Another variation on having the scheduler poll for outstanding requests on behalf of

13

_erh_d of Shred-based point-to-petnt e_unlcation
_0000

"t_rea_ (thread polll) --

"/_read (scheduler POlls)

_read (scheduler polls} ----

1000 10000

Nes_ge size (bytettt)

Figure 8: Execution times for native and thread-based communication

threads is to eliminate the list of polling requests altogether. Each thread stores its polling

request in its thread control block (TCB), which is a data structure that defines a thread,

similar to how a process control block (PCB) defines a process [2]. When the scheduler is

invoked to perform a context switch, it selects the next available TCB from the thread queue

and determines if a request is pending. If not, the thread's context is restored. Otherwise,

the pending message is polled for by the scheduler. If the message has arrived, the thread

is restored, otherwise the TCB is placed back on the thread queue and the next TCB is

retrieved. This method eliminates polling for all outstanding requests at each scheduling

point, and does not fully restore a thread's context until its request has been satisfied. The

disadvantage of this approach is that some thread packages may not allow modification of

the scheduler activities necessary to poll for a thread before completing the thread switch.

We refer to this version of the scheduler polling algorithm as Scheduler polls (PS), where PS

stands for "partial switch".

Using the point-to-point communication layer of Chant, we encoded all three polling

algorithms (thread polls, scheduler polls using a list of requests, scheduler polls using partial

context switch) and tested the system to measure their relative performance using the thread

code depicted in Figure 9, where the parameters alpha and beta represent the number of

iterations for a generic computation, and were modified to affect the average number of

outstanding receive requests (or waiting threads).

First, we fix beta at 100 and vary alpha from 100 to 100000, then run the experiment

with two processors and 12 threads per processor, with each thread performing 100 iterations

14

loop

{

compute (alpha) ;

send () ;

compute (beta) ;

recv ();

Figure 9: Pseudo-code for threads, polling exercise.

alpha

100

1000

10000

100000

Time

2730

2860

4000

7260

Thread poll s

CtxSw msgtest

6655 2662

6655 2693

7029 3057

7977 3975

Scheduler polls (19:9)

Time

2413

2515

3660

6815

CtxSw msgtest

5580 2011

5630 2010

5579 2535

5649 3723

Scheduler polls (WQ)

Time

5950

6090

6123

9990

CtxSw msgtest

5488 11817

5489 11942

5509 11875

5534 13238

Table 3: Execution times (ins), average number of threads waiting on outstanding receive

requests, and total number of msgtest calls attempted for all three polling algorithms,

beta = 100

2000

Pollinq Results: Execution Times

'I_tltead polll e

SchedUler polls (PS)
Scheduler pollB (wQ) _--

100 1000 10000 100000

Stze of alpha computation

Figure 10: Execution times for polling experiments, beta = 100

15

it

10000

9500

9000

8500

8000

7500

7000

65O0

6000

5500

5000

100

Pollin_ R_ults: Context _ttc_e6

_rgad Po11= _--

Scheduler polls IPSl
_hedulmr polls IWQI

j/

J
/4 /

tooo 1oooo

Size o! a]pt_a computation

Figure 11: Total context switches for polling experiments, beta = 100

of the outer send/receive loop. Table 3 presents these results, where Time represent the

total running time (ms) of the test, CtzSw represents the total number of complete context

switches performed, and msgtest represents the total number of msgtest calls attempted.

The data indicates that having the Scheduler poll (PS) algorithm yields the lowest running

times for the three approaches (depicted in Figure 10). This is because the Thread polls

algorithm must complete full context switches at each scheduling opportunity to check for

the completion of a message, while the Scheduler polls (PS) algorithm need only perform a

partial switch to check for outstanding messages. This is seen in comparing the total number

of context switches for the two methods (depicted in Figure 11). However, the Thread polls

algorithm performs, on average, only 10% worse than the Scheduler polls (PS) algorithm.

Thus, for a thread package that does not support the ability to modify the scheduler's

behavior as required for the Scheduler polls (PS) algorithm, we have found that only a 10%

degradation of performance will result from using the Thread polls algorithm, which can be

applied to any lightweight thread package. The data also shows that the Scheduler polls

(WQ) algorithm performs much worse than the other two, as a result of having to check all

outstanding requests at each scheduling opportunity., As we can see from the number of

msgtest calls performed by the three algorithms (depicted in Figure 12), the Scheduler polls

(WQ) algorithm performs far more msgtest calls than the other two algorithms, accounting

for its degraded performance. However, the Scheduler polls (WQ) algorithm does achieve the

lowest number of context switches of the three methods (see Figure 11), since threads are

only switched when they are ready to run. For systems that could implement this algorithm

as origionally intended, with a single msgtestany call rather than a test for each individual

16

I0000

!

Polling Results: Total msqtest[) Calls

Threid pOlls @-

Scheduler polls {PS)

Schefluler polls [WQ) _--

1000
100 1000 10000 100000

Size of alpha computation

Figure 12: Total msgtest calls attempted for polling experiments, beta = 100

message, we expect the relative performance of this algorithm to change. We hope to test

this hypothesis on a future version of Chant using the MPI communication system, which

supports the msgtesta.ny functionality.

Figure 13, which plots the average waiting time versus alpha, confirms that by increasing

alpha, we successfully increases the number of threads waiting for outstanding requests.

Intuitively, this means that increasing the time between when a receive is posted and the

corresponding send is sent will increase the number of threads waiting for messages.

Finally, to support our conclusions, we repeated the experiments for beta values of 1000

and 0, presented in Tables 4 and 5, respectively. These additional results confirm our earlier

analysis regarding the relative performance of the three polling algorithms.

5 Conclusions

Threads are an emerging model for supporting parallelism and asynchronous events in ap-

plications and language implementations, for both parallel and sequential machines. Despite

their popularity and utility, lightweight thread packages for distributed memory systems

have received little attention.

In this paper, we introduce the notion of talking threads as a set of lightweight threads

capable of communication in a distributed memory environment, and describe the design of

17

4.5

3

Polllnq _aultn: Avera_ waitlnq _readB

Scheduler POlls [PS)

• cheduler polls (_)

t /

./5//"/Z

110o
1 ooo 1 oooo 1 ooooo

$ilte of alpha computation

Figure 13: Average number of waiting threads for polling experiments, beta = 100

a talking threads system called Chant. Chant is capable of supporting both point-to-point

communication (e.g., send/receive) and remote service request communication (e.g., remote

procedure call). Portability and efficiency are achieved by providing a minimal interface over

existing thread and communication libraries, such as pthreads, Quickthreads, NX, and MPI.

We have designed Chant in three layers: (1) point-to-point communication among

threads, (2) remote service requests using point-to-point communication and special server

threads, and (3) global thread operations using remote procedure calls. We have also de-

signed an interface to all of these layers which is based on an extension of the POSIX pthreads

alpha Time

100 6765

1000 6960

10000 8000

100000 10980

Thread polls

CtxSw msgtest

6945 2909

6888 2837

6950 2887

7246 3239

Scheduler polls (PS)

msgtest

2415

2564

2311

2532

Scheduler polls (WQ)
Time CtxSw

6480 5514

6660 5523

7670 5530

10560 5537

Pime

10065

10262

11350

14100

CtxSw msgtest

5485 12323

5508 13496

5512 12676

5532 12405

Table 4: Execution times (ms), average number of threads waiting on outstanding receive

requests, and total number of msgtest calls attempted for all three polling algorithms,
beta = 1000

18

alpha

100

1000

10000

100000

Time

3290

3460

4570

7805

Thread pol_

CtxSw msgtest

5792 3578

5864 4646

6100 4887

7206 5977

Scheduler polls (PS)

Time

2715

2725

3980

7343

CtxSw msgtest

3628 3514

3622 3550

3608 4335

3630 6631

' rSchedule polls (WQ)

Time

4940

5120

6080

9263

CtxSw msgtest

3130 9845

3174 10000

3110 10310

3144 13024

Table 5: Execution times (ms), average number of threads waiting on outstanding receive

requests, and total number of msgtest calls attempted for all three polling algorithms,

beta = 0

standard.

We have implemented the point-to-point communication layer of Chant, and measured

its overhead relative the the underlying communication system. We found that in a worst-

case scenario, the overhead caused by Chant's point-to-point layer is low (about 15%), but

that this can be halved by avoiding a context switch when only a single thread exists on a

processing element.

We have also implemented and measured three scheduling policies that poll for out-

standing receive operations. We found that the Scheduler polls (PS) policy, in which the

scheduler polls for threads after performing a partial context switch, is superior to the other

two methds: having the threads poll for themselves (Thread polls) and having the scheduler

poll for the threads using a waiting queue (Scheduler polls (WQ). However, since some thread

packages do not allow the scheduler to be manipulated as required to implement the Sched-

uler polls (PS) algorithm, we found that the Thread polls algorithm performs only slightly

worse, yet can be implemtned using any lightweight thread pacakge.

We are continuing to develop Chant and its interface, and plan to use this runtime

system to support various parallel languages and programming systems. We plan to report
on the status of Chant and these support efforts in the near future.

References

[1] Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and Henry M. Levy. Scheduler
activations: Effective kernel support for the user-level management of parallelism. In ACM

Eymposium on Operating Systems Principles, pages 95-109, 1991.

[2] Maurice J. Bach. The Design of the UNIX Operating System. Software Series. Prentice-Hall,

1986.

19

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Brian N. Bershad, Edward D. Lazowska, Henry M. Levy, and David B. Wagner. An open en-

vironment for building parallel programming systems. Technical Report 88-01-03, Department

of Computer Science, University of Washington, January 1988.

Ralph Butler and Ewing Lusk. User's guide to the p4 parallel programming system. Technical
Report ANL-92/17, Argonne National Laboratory, October 1992.

Barbara M. Chapman, Piyush Mehrotra, John Van Rosendale, and Hans P. Zima. A software

architecture of multidisciplinary applications: Integrating task and data parallelism. ICASE

Report 94-18, Institute for Computer Applications in Science and Engineering, Hampton, VA,
March 1994.

T. C. K. Chou and J. A. Abraham. Load balancing in distributed systems. IEEE Transactions

on Software Engineering, SE-8(4), July 1982.

D. E. Culler, A. Sah, K. E. Schauser, T. von Eicken, and J. Wawrzynek. Fine-grain paral-

lelism with minimal hardware support: A compiler-controlled threaded abstract machine. In

4 th International Conf. on Architectural Support for Programming Languages and Operating
Systems, 1991.

Edward W. Felton and Dylan McNamee. Improving the performance of message-passing ap-

plications by multithreading. In Proceedings of the Scalable High Performance Computing
Conference, pages 84-89, April 1992.

Message Passing Interface Forum. Document for a Standard Message Passing Interface, draft
edition, November 1993.

Inn Foster, Carl Kesselman, Robert Olson, and Steven Tuecke. Nexus: An interoperability

layer for parallel and distributed computer systems. Technical Report Version 1.3, Argonne
National Labs, December 1993.

Dirk Grunwald. A users guide to AWESIME: An object oriented parallel programming and

simulation system. Technical Report CU-CS-552-91, Department of Computer Science, Uni-

versity of Colorado at Boulder, November 1991.

Matthew Haines and Wim B5hm. An evaluation of software multithreading in a conven-

tional distributed memory multiprocessor. In IEEE Symposium on Parallel and Distributed

Processing, pages 106-113, December 1993.

Matthew Haines and Wim BShm. On the design of distributed memory Sisal. Journal of

Programming Languages, 1:209-240, 1993.

High Performance Fortran Forum. High Performance Fortran Language ,Specification, version
1.0 edition, May 1993.

Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. Compiling Fortran D for MIMD

distributed-memory machines. Communications of the ACM, 35(8):66 80, August 1992.

[16] IEEE. Threads Extension for Portable Operating ,Systems (Draft 7), February 1992.

2O

[17] Intel Corporation,Beaverton,OR. Paragon OSF/I User's Guide, April 1993.

[18] David Keppel. Tools and techniques for building fast portable threads packages. Technical

Report UWCSE 93-05-06, University of Washington, 1993.

[19] C. Koelbel and P. Mehrotra. Compiling global name-space parallel loops for distributed exe-
cution. IEEE Transactions on Parallel and Distributed Systems, 2(4):440 451, October 1991.

[20] Jeff Kramer, Jeff Magee, Morris Sloman, Naranker Dulay, S.C. Cheung, Stephen Crane, and
Kevin Twindle. An introduction to distributed programming in REX. In Proceedings of

ESPRIT-91, pages 207-222, Brussels, November 1991.

[21] Jenq Kuen Lee and Dennis Gannon. Object oriented parallel programming experiments and
results. In Proceedings of Supercomputing 91, pages 273-282, Albuquerque, NM, November

1991.

[22] Frank Mueller. A library implementation of POSIX threads under UNIX. In Winter USENIX,

pages 29-41, San Diego, CA, January 1993.

[23] Bodhisattwa Mukherjee, Greg Eisenhauer, and Kaushik Ghosh. A machine independent inter-

face for lightweight threads. Technical Report CIT-CC-93/53, College of Computing, Georgia

Institute of Technology, Atlanta, Georgia, 1993.

[24] nCUBE, Beaverton, OR. nCUBE/2 Technical Overview, PROGRAMMLYG, 1990.

[25] David M. Nicol and Philip HeideIberger. Optimistic parallel simulation of continuous time

marker chains using unifornfization. Journal of Parallel and Distributed Computing, 18(4):395

410, August 1993.

[26] Matthew Rosing and Joel Saltz. Low latency messages on distributed memory multiprocessors.
Technical Report ICASE Report No. 93-30, Institute for Computer Applications in Science

and Engineering, NASA LaRC, Hampton, Virginia, June 1993.

[27] Carl Schmidtmann, Michael Tao, and Steven Watt. Design and imphnentation of a multi-
threaded Xlib. In Winter USENIX, pages 193-203, San Diego, CA, January 1993.

[28] H. Schwetman. CSIM Reference Manual (Revision 9). Microelectronics and Computer Tech-

nology Corperation, 9430 Research Blvd, Austin, TX, 1986.

[29] Sun Microsystems, Inc. Lightweight Process Library, sun release 4.1 edition, January 1990.

[30] Vaidy Sunderam. PVM: A framework for parallel distributed computing. Concurrency: Prac-

tice and Experience, 2(4):315-339, December 1990.

[31] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Erik Schauser. Active

messages: A mechanism for integrated communications and computation. In Proceedings of the

19th Annual b,ternationaI Symposium on Computer Architecture, pages 256 266, May 1992.

[32] W. E. Weihl. Remote procedure call. In Sape Mullender, editor, Distributed systems, chapter 4,

pages 65-86. ACM Press, 1989.

21

[33] Mark Weiser,Alan Demers,and Carl Hauser. The portablecommonruntime approachto
interoperability.A CM Symposium on Operating Systems Principles, pages 114-122, December
1989.

[34] Hans P. Zima and Barbara M. Chapman. Compiling for distributed memory systems. P1v-

ceedings of the IEEE, Special Section on Languages and Compilers for Parallel Machines (To
appear 1993), 1993. Also: Technical Report ACPC/TR 92-16, Austrian Center for Parallel

Computation (November 1992).

22

Appendix A: The Chant Interface

The Chant interface can be viewed as an extension to the POSIX pthread interface, where

we have created a new thread object called a chanter, representing a global thread capable of

communication and synchronization with other global threads in the system. In addition to

the pthreads routines that deal with attributes, user-local data, mutex variables, condition

variables, and scheduling (which can all be applied to the pthread base of a global thread),

the chant interface consists of the following routines (also depicted with ANSI prototypes in

Figure 14):

• pthread_chanter_t is a new datatype that defines a global thread within the system,

composed of a processing element identifier, a process identifier, and a local thread

identifier, which is the base class of the thread type from the underlying thread package

(in this case, a pthread_t).

• pthread_chanter_create creates a global thread within a specified processing element

(pe) and process, which may be LOCAL.

• pthread_chanter_j oin blocks the calling thread until the specified global thread exits.

• pthread_chanterAetach informs the system that the storage for the specified global

thread is to be reclaimed when the thread exits.

• pthread_chanter_exit terminates the calling thread, making the specified value avail-

able to any threads joining with the calling thread.

• pthread_chanter_yield gives up the processing element to the next ready thread, as

determined by the (possibly global) scheduler.

• pthread_chanter_self returns the pthread_chanter_t structure for the calling thread.

• pthread_chanter_pthread returns the local thread identifier of the speficied global

thread, which can then be used for any of the local thread operations provided by the

underlying thread package. This allows any global thread to behave as a local thread

with respect to the underlying thread package, thus avoiding the need to provide full

lightweight thread capabilities at the Chant interface.

• pthread_chanter_pe returns the processing element identifier of the specified thread,

which can be used to test if two threads occupy the same processing element, perhaps

having access to common shared memory.

23

• pthread_chanter_process returns the process identifier of the specified thread, which

can be used to test if two threads occupy the same process, and hence exist in the

same address space.

• pthread_chanter_equal compares two global thread identifiers to see if they refer

to the same thread. This functionality allows the global thread representation to be
hidden from the user interface.

• pthread_chanter_cancel causes the specified global thread to exit as if it had called
the

pthread_chanter_exit routine.

• pthread_chanter_send sends the data pointed to by bur to the specified global thread.

This is a locally-blocking routine, and returns when the data being sent (bug) can be
modified.

• pthread_chanter_recv posts a receive for a message from the specified global thread,

informing the system where the message is to be placed. This is a blocking routine,

which returns only when tile data is located in the specified buffer location.

• pthread_chanter_irecv posts a receive for a message from the specified global thread,

informing the system where the message is to be placed. This is a non-blocking routine,

which returns immediately, and returning a handle by which the message can be later

checked for completion using the pthread_chanternusgtest or pthread_chanter_msgwait

routines. Although neither of the receive routines actually blocks the processing ele-

ment, this routine will return immediate control to the calling thread rather than some

other ready thread.

• pthread_chanter_msgtest checks for the completion of an immediate receive operation

using the handle returned by the pthread_chanter_irecv routine, and returns a true
or false value.

• pthread_chanter_msgwait waits for the completion of an immediate receive operation

using the handle returned by the pthread_chanter_irecv routine.

24

typedef struct pthread_chanter {

int pe;

int process;

pthread_t thread;

} pthread_chanter_t;

// processing element id
// kernel entity (process) id

// thread id

int pthread_chanter_create (pthread_chanter_t *thread,

const pthread_attr_t *attr, void * (*start routine) (void*),

void *arg, int pe, int process);

int pthread_chanter_join (const pthread_chanter_t *thread, void **status);

int pthread_chanter_detach (const pthread_chanter_t *thread);

void pthread_chanter_exit (void *value_ptr);

void pthread_chanter_yield (void);

pthread_chanter_t ,pthread_chanter_self (void);

pthread_t pthreadchanter_pthread (const pthread_chanter_t *thread);

int pthread_chanter_pe (const pthread_chanter_t *thread);

int pthread_chanter_process (const pthread_chanter_t *thread);

int pthread_chanter_equal (const pthread_chanter_t *tl,

const pthread_chanter_t *t2);

int pthread_chanter_cancel (const pthread_chanter_t *thread);

int pthread_chanter_send (int type, char *bur, int count,

const pthread_chanter_t *thread);

int pthread_chanter_recv (int type, char *bur, int count,

pthread_chanter_t *thread);

int pthread_chanter_irecv (int *handle, int type, char *bur, int count,

pthread_chanter_t *thread);

int pthread_chanter_msgtest (int handle);

int pthread_chanter_msgwait (int handle);

Figure 14: Chant interface based on an extension of pthreads

25

REPORT DOCUMENTATION PAGE FormApproved
OMB No 0704-0188

Public reporting burden for this collection of information is estimated to average ! hour per response including the time for reviewing instructions searching existin# data sources,

gathering a nd maintalnln_ the data needed, and completing and rev ewing the collection of nformalion Send comments rel_arding this burden estimate or any othe_aspect of this

collection of information, Including suggestions for reducing this burden to Washington Headquarters Services Directorate Tor Information Operations and Reports]2] 5 Jefferson

Day s H ghway. Suite 1204, Arlington, VA 22202 4302, and to the Office of Management and Budget. Paperwork Reduction Project (0704 0188), Wash ngton. DC 20503.

]. AGENCY USE ONLY(Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

April 1994 Contractor Re)ort

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

ON THE DESIGN OF CHANT: A TALKING THREADS PACKAGE

6. AUTHOR(S)

Matthew tlaines

David Cronk

Piyush Mehrotra

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science

and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23681-0001

9. SPONSORING/MONITORING .'_GENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-0001

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Michael F. Card

Final Report

To appear in Supercomputing '94

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unctmssified-Unfimited

Subject Category 61

C NASl-19480

WU 505-90-52-01

8. PERFORMING ORGANIZATION

REPORT NUMBER

ICASE Report No. 94-25

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA CR-194903

ICASE Report No. 94-25

12b, DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Lightweight threads are becoming increazingly useful in supporting parallelism and asynchronous control structures in

applications and language implementations. However, fightweight thread packages traditionally support only shared

memory synchronization and communication primitives, limiting their use in distributed memory environments. We

introduce the design of a runtime interface, called Chant, that supports lightweight threads with the capability

of communication using both point-to-point and remote service request primitives, built from standard message

passing libraries. This is accomplished by extending the POSIX pthreads interface with global thread identifiers,

global thread operations, and message passing primitives. This paper introduces the Chant interface and describes

the runtime issues in providing an efficient, portable implementation of such an interface. In particular, we present

performance results of the initial portion of our runtime system: point-to-point message passing among threads. We

examine the issue of thread scheduling in the presence of polling for messages, and mea_sure the overhead incurred

when using this interface a.s opposed to using the underlying communication layer directly. We show that our design

can accommodate various polling methods, depending on the level of support present in the underlying thread

system, and imposes little overhead in point-to-point message passing over the existing communication layer.

14. SUBJECT TERMS

Lightweight threads, message passing, parallel routine systems

17. SECURITY CLASSIFICATION

OF REPORT

U ncla._sified

_ISN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

1s. NUMBER OF PAGES

27

16. PRICE CODE

A03

19. SECURITY CLASSIFICATION 20. LIMITATION

OF ABSTRACT OF ABSTRACT

Standard Form 298(Rev. 2-89)
Prescribed by ANSI Std Z39 18
298-102

